

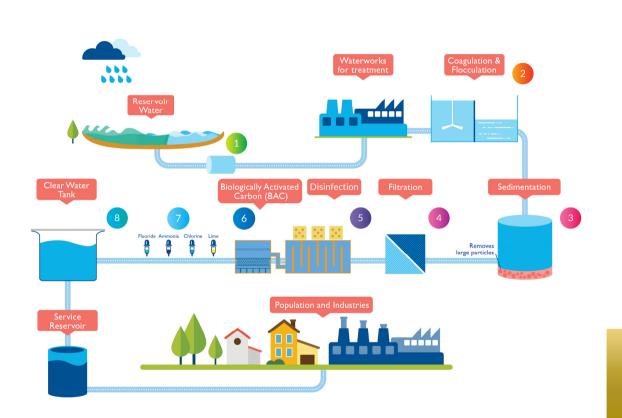
DEGRADATION OF CONTAMINANT ORGANIC COMPOUNDS:

A possible solution for the environment

Source: https://graphics.reuters.com/INDIA-RIVER/010081TW39P/index.html

Mineral water label

DEPT. OF HYGIENE, PREVENTIVE I				
CHEMICAL AND PHYSICAL ANALYSIS				
WATER TEMPERATURE AT THE SOL	URCE	,C	7,8	
HYDROGEN IONS AT THE SOURCE	PH	7,65		
FIXED RESIDUE AT 180°C		mg/l	105	
SPECIFIC ELECTRICAL CONDUCTIV	VITY AT 20°C	µS/cm	135	
AMMONIACAL NITROGEN (NH4+)		mg/l	assente	
NITRITES (NO,:)		mg/l	assenti	
CARBON DIOXIDE AT THE SOURCE	E	mg/l	2,50	
ARSENIC		mg/l	assente	
ELEMENTS CONTAINED IN 1 LITRE OF WATER (mg/l)				
CALCIUM Ca+ 16,8	CHLORIDE	Cl	7,3	
SODIUM Na+ 6,1	FLUORIDE	F	0,2	
MAGNESIUM Mg+ 4,9	SILICON DIOX	IDE SIO2	16,0	
POTASSIUM K+ 1,7	BICARBONA	TE HCC	83,6	
SULPHATE SO ₄ 8,2	NITRATE	NO ₃	2,0	
Messina 17/11/2014 Prof. O. C. Grillo				
BACTERIOLOGICALLY PURE AT THE SOURCE				
FONTENOCE water complies with LD. no. 176 of 08/10/11 SUITABLE FOR LOW SODIUM DIETS				
JULIABLE FUR LUI	W DODION	DIE	3	


Can anyone read what is written here?

Source: http://www.ibslifestylewater.com/properties-label/

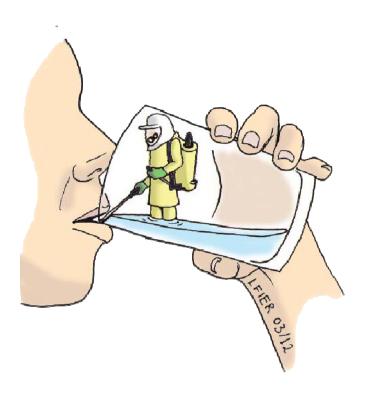
What substances do you think that have in your tap water?

Conventional water treatment

Source:https://www.pub.gov.sg/watersupply/watertreatment

Evaluation

- Chlorine
- ✓ Fluorine
- ✓ Turbidity
- ✓ Color
- ✓ pH
- ✓ Coliforms


That's enought?

Contaminant limits

Name of the Contaminant	Permissible Limit as suggested by WHO (mg/L)	Some of the Diseases/Problems Caused (if the actual concentration is more than the permissible limit)
Cadmium	0.003	Kidney dysfunction and lung impairment.
Iron	Not Given	Inflammatory problems, kidney problems, hypertension.
Arsenic	0.01	Black foot disease, arsenicosis.
Lead	0.01	Lead poisoning.
Mercury	0.006	Hydrargyria.
Chlorine	5.0	Possible artery damage, melanoma, and cancers
Nitrate (as nitrate ion)	50.0	Reduction in the oxygen-carrying capacity of blood, blue-baby syndrome
Fluoride	1.5	Dental and skeletal fluorosis
DDT	0.001	Headache, nausea, vomiting, confusion, and tremors.
Uranium	0.03	Nephritis.

Source:https://www.researchgate.net/publication/305280524_A_Sustainable_and_Economical_Approach_to_Water_Treatment_A_Review_in_Context_of_India

Contaminants

Do you think there is a procedure that can eliminate these contaminants, for example, dyes, from water?

Thinking about a problem situation:

Imagine that you are a chemist and collected a sample of water from a river and it had the following

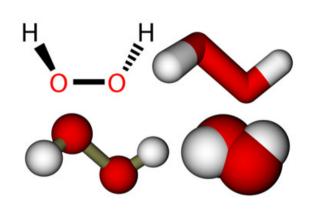
characteristic.

WE NEED TO ANSWER

How can we make it "decontaminated" again?

With what treatment?

CHEMISTRY

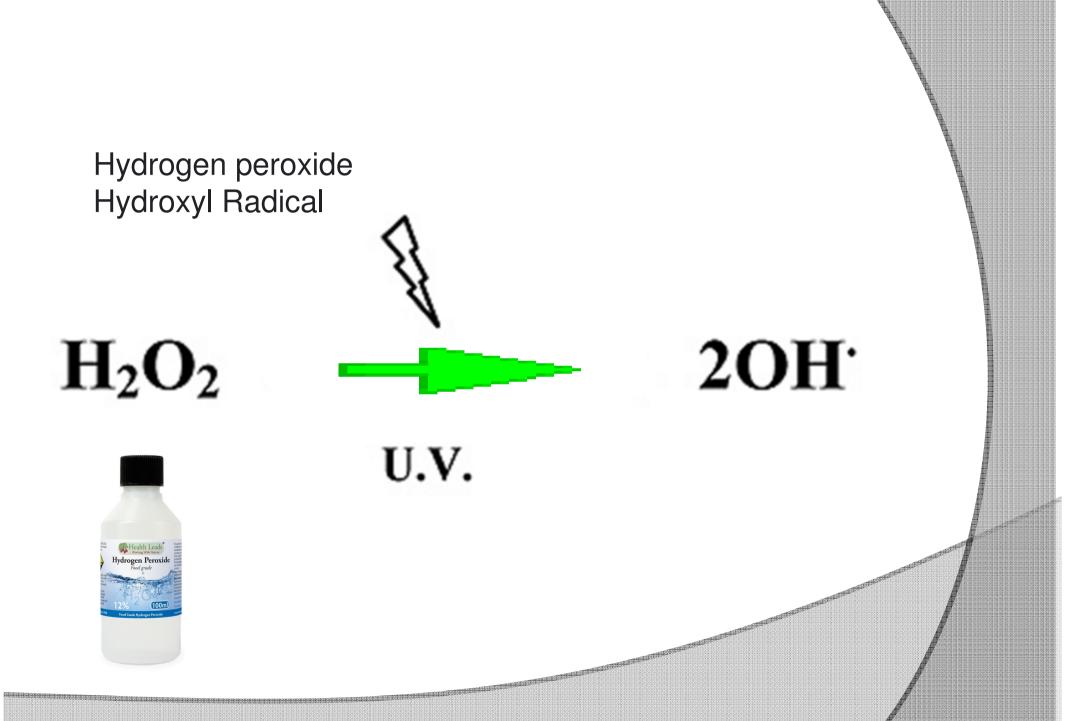


Prof. PhD Marcos Roberto de Vasconcelos Lanza and the Electrochemical and Environmental Processes Group – GPEA

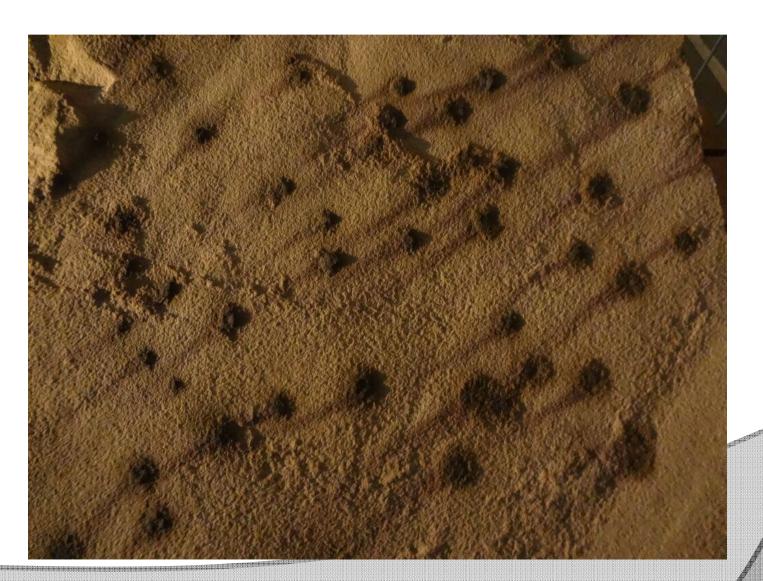
Oxidative Processes Advanced

The objective is to degrade pollutants that are not completely removed by conventional water treatment.

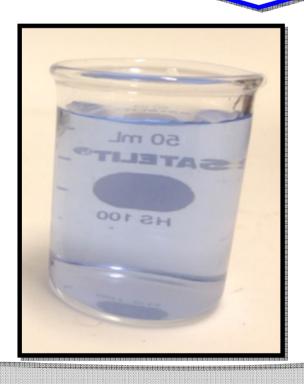
Oxidative Processes Advanced (POA)



In your daily life, where do you use hydrogen peroxide?

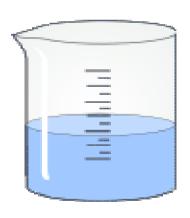


Hydrogen peroxide is commonly used to bleach hair.



Example of an oxidized rock in a museum

Returning to the problematic

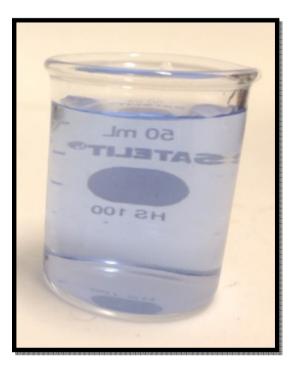

How can we decontaminate water? Let's see how advanced oxidation processes work?

THE EXPERIMENT

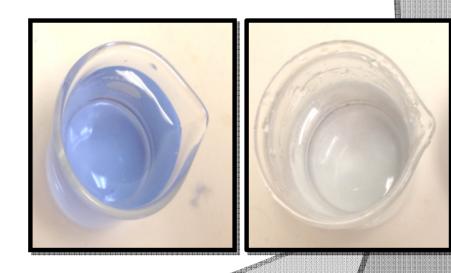
Laboratory materials used

Beaker

Magnetic bar


Balance

Magnetic shaker

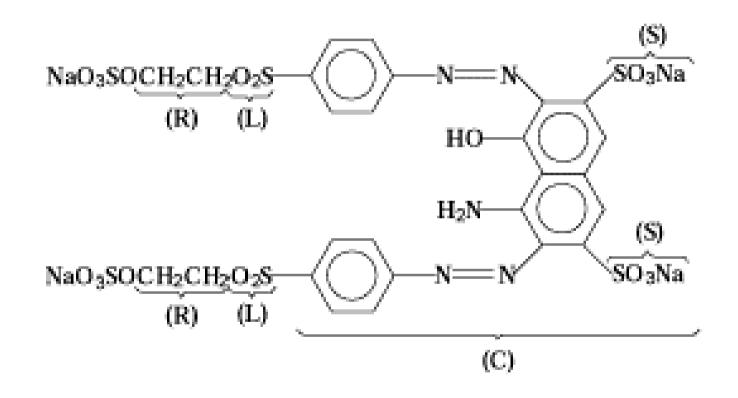

EXPERIMENT

- ✓ Add to a beaker with 40mL of distilled water and 10mL of dye;
- ✓ Then place a piece of steel wool (~ 0.05g) (releasing the iron in the reaction);
- ✓ Leave under constant agitation;
- ✓ Add 1 ml hydrogen peroxide (3% hydrogen peroxide), and observe.

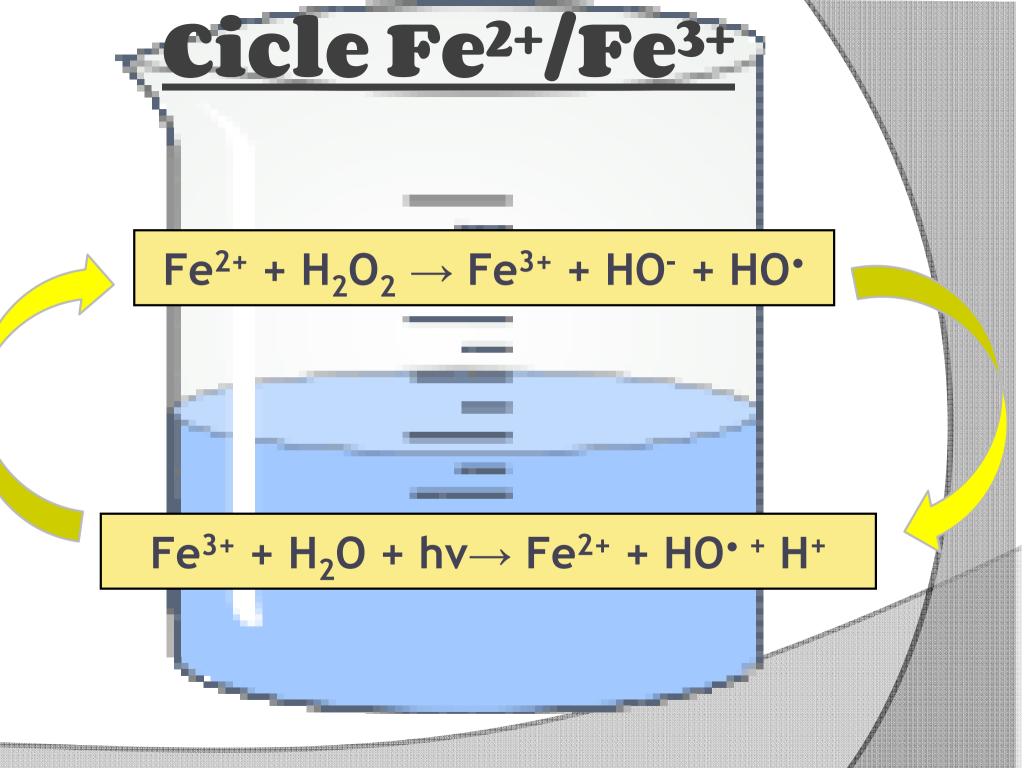
What happened in the experiment?

BEFORE

AFTER


BEFORE

AFTER


ADVANGES of POA

- It has strong oxidizing power.
- It promotes the oxidation of complex compounds until they convert to CO₂, H₂O and inorganic compounds, such as gases.
- They don't need post-treatment;
- Consume less energy;
- Enable in situ sorting.

Black 5 Reactive Dye Molecule

 $R-N=N-R + 4H^+ + 2Fe^0 \rightarrow R-NH_2 + H_2N-R + 2Fe^{2+}$

As we know what is in the treated solution?

Chemical analysis

To find out what is in the treated solution, we can use different types of chemical analysis, such as chromatography.

Research Lab

The research lines are:

- 1) Development and evaluation of processes materials for the electrosynthesis of hydrogen peroxide in-situ;
- 2) Development and evaluation of electrode materials for electrochemical synthesis processes and / or for the treatment of effluents;
- 3) Development and evaluation (POA);
- 4) Development and evaluation of electrochemical sensors and / or biosensors for online analysis.

Is this process applied?

Group of electrochemical and environmental processes:

Scientific research

Master's

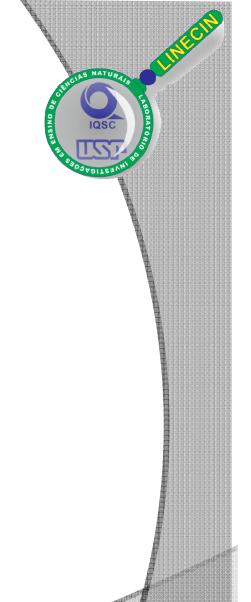
PhD

Post doctoral

Partnerships

The Paulista State University - UNESP Araraquara

Federal University of São Paulo - UNIFESP


São Carlos School of Engineering - EESC

University in Canada

Thanks!

Scholarship students involved:
Ana Carolina Steola
Ariane Carolina da Rocha
Caio Nunes
Daniel Matheus da Silva
Karen Angelotti
Fábio Gullo

Coordenation: Kenia Naara Parra Supervision: Prof.^a Dr^a Ana Cláudia Kasseboehme

References

Migliorini, F. L.; Braga, N. A.; Alves, S. A.; Lanza, M. R. V.; Baldan, M. R.; Ferreira, N. G.; Journal of Hazardous Materials; 192, 1683-1689, 2011.

Migliorini, F. L.; Alegre, M. D.; Alves, S. A.; Lanza, M. R. V.; Baldan, M. R.; Ferreira, N. G.; ECS Transactions; 43 (1), 89-96, 2012.

Steter, J. R.; Dionísio, D.; Lanza, M. R. V.; Motheo, A. J.; Journal of Applied Electrochemistry; 44, 1317-1325, 2014.

Vasconcelos, V. M.; Ribeiro, F. L.; Migliorini, F. L.; Alves, S. A.; Steter, J. R.; Baldan, M. R.; Ferreira, N. G.; Lanza, M. R. V.; Electrochimica Acta, 178, 484-493, 2015.

Vasconcelos, V. M.; Migliorini, F. L.; Steter, J. R.; Baldan, M. R.; Ferreira, N. G.; Lanza, M. R. V.; Journal of Environmental Chemical Engineering, 4, 3900-3909, 2016.

Hamza, M.; Abdelhedi, R.; Brillas, E.; Sires, I.; Journal of Electroanalytical Chemistry; 627, 41-50, 2009.

Zhang, C.; Wang, J.; Murakami, T.; Fujishima, A.; Fu, D.; Gu, Z.; Journal of Electroanalytical Chemistry; 638, 91-99, 2010.